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PREFACE
Portions of the following report were originated under studies con-
ducted for the Department of Army Ordnance Corps under Contract
No. DA-04-495-Ord 18. Such studies are now conducted for the
National Aeronautics and Space Administration under Contract No.
NASw-6.
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ABSTRACT

The results of investigations into certain areas of
curve fitting are presented. The derivation of the normal
equations in two dimensions is discussed and an easily
generalizable way of viewing the structure of the normal
equations is given. A new method is presented for the
approximate separation of variables in an empirically
determined function. The need for double precision calcu-
lation is explained, and the routines for curve fitting which
are available at the Jet Propulsion Laboratory are

summarized.

. INTRODUCTION

When least-squares curve fits of orders greater than 4 began to be run on the general
purpose digital computer, it was noticed that the fits, far from getting better as the order of the
polynomial increased, were actually getting worse. This led to an investigation of the analysis
of curve fitting and to the writing of a double-precision curve-fitting routine to handle curve fits
up to orders as great as 10 or 11. Later, the need arose for routines to fit polynomials in two or

three dimensions, and for a routine to separate variables in two or three dimensions.

The purpose of this Report is to make known the results of investigations into the

problems of multidimensional curve fitting and separation of variables, and to outline the nature
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of the programs available for doing these kinds of work.
In particular, this Report:
1. Summarizes portions of the curve-fitting theory.

2. Presents an easily generalizable method of setting up normal equations in
any number of dimensions.

3. Presents some new results on separation of variables.
4. Explains the need for double-precision calculation.

5. Summarizes the available routines for curve fitting.
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Il.  THE GENERAL CURVE-FITTING PROBLEM

There are two common motivations for doing curve fitting. In some cases a set of data
may be known to contain observational errors of a random type, and it is desired to find the most
likely values of the observed function. By making the assumptions that the underlying trend is
an mth-order polynomial and that the noise is uncorrelated and normally distributed with mean
zero, one is led directly to the standard normal equations of the least-squares process (see

Ref. 1). A proof of this statement is contained in Appendix A.

In other cases a function may be known exactly on a discreet point set (or with sufficient
precision so that one can consider it known exactly), and it may be desired to find a calculational
algorithm to approximate the original function. In this case it may be desirable to use some
measure of error other than that of the sum of the squares of the point wise errors, such as the
magnitude of the largest absolute deviation.! These other measures of error are generally rather
hard to handle, however, and since the least-squares measure of error leads to very simple

analytic results, it is usually used.

A. Derivation of the Normal Equations

The ordinary one-dimensional least-squares analysis with powers of x is well-known
(Ref. 3), and there is no need to repeat it here. The general analysis in n dimensions, although
it presents no difficulty, is seldom seen in the literature. The notation of two dimensions will be
used to present this theory since it contains enough structure to make clear the extension to n
dimensions and because the notation necessary in n dimensions is so complex as to obscure the

argument.

We wish to determine the g, in the polynomial

Ay H A
P(x,y) :aoxoy 04 .. +a,x My

Tror examples of approximations made using the magnitude of the largest error as a criterion of

‘*‘goodness of fit’* see Ref. 2.
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in such a way that £ is a minimum where:

(Flx;,y) - P(xi,yi)]2

ry
l
n [\

The conditions which have to be satisfied for a minimum are:

OF
=0 V=0, ,m

ey

But
9F n Y

n
=9 (F - P)x. y. ¥
aav igl i Y

So that the nomal equations become

12 12 13

ATAg  myth A+A Byt A, u
Q (4]
ag in v y. ” + o toa E xiv moy Vo < E Flx;,y,) xivy.v
13 1

1

or

Ax = b
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B. A General Method for Writing the Normal Equations

An easily generalizable way of looking at the structure of the matrix 4 may be seen by
defining an exponent vector to be the set of integers (X, 1) which appear as exponents of x and

y in a single term of the approximating polynomial. Now let the polynomial be

Ay # Aou
P(x,y) = apx 0,704 ..

so that the exponent vectors are

(N gs )
Ny

A s )

Now form the addition table of the exponent vectors as follows:

O\O”U'O) O\l”ul) I (}\m”u'm)
(Ags 119) (w, v)og wolgy - - - ey,
Ay ey (u,0) ¢ (u, v}, - (u,v)y,,
A, M) (u,2) 4 (u,v) < (u, v),,
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where (u, v),, = (A & Appy + 1) Now let

2y -G
14

symbolize the operation of replacing the pair (4, v) by the number

2 xiu yiv

i
Then, making the substitution

A +A, ptp
T a kT

i Yi

- (u, v)kl k= 1, ««-,m

i

the elements of the addition table become exactly the elements of the matrix A for the chosen

polynomial. For example, let P(x,y) = a5 + alx2 + a2x3y5. Then the exponent vectors are

0,0
(2,0
(3,5)
and the addition table is as follows:
0,0 2,0 3,5
0,0 0,0 2,0 3,5
2,0 2,0 4,0 5,5
3,5 3,5 5,5 6,10
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Making the replacement

Z xi" yiv - (u, v)
i

in the body of the table gives

5 353 T xSyp » x5y 10
i i

which is exactly the array of the matrix 4 for the given Polynomial.

Now it is easy to see how generalization to three dimensions occurs. The addition table

looks like the following:

Ao kgrvgd - o 0 Cpapgvy)
(Ags kg 1) (u, v, W) e (u, v, w)
(xm, ,U'mv Vm) (u, v, W)mo . . . (u, v, W)mm
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where (u, v, w)kl = ()\k + >\l’ My + Hp Yy + Vl) and the necessary replacement is:

Note that in the one-dimensional case the exponent vectors are just single integers and

the replacement becomes:

For the special one-dimensional case where P(x) = ap + --- + a_x™ the addition table is:

0 1 2 m

0 0 1 2 m
1 1 2 3 .. m+1
2 2 3 4 <. m+2

"m m m+1 m+2 ... 2m
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which becomes after replacement:

which is the familiar matrix of the normal equations.

C. Orthogonal Polynomials

Suppose we have a set of polynomials P, (x) (i = 0, ---, m) with the property that p,(x) is

a polynomial in x of degree i with a non-zero leading coefficient. Since any polynomial of degree

m is uniquely representable as a linear combination cypy{x) + -+ + ¢ p, (x). we can consider the

problem of approximating an empirically determined function F(x,} i =1, ---, n by such a linear

combination of the P;(x). In this case the sum of squares of the errors is

E = z {F(xi) - [co + e cum(x)]}2
i=1

and taking partial derivatives with respect to the ¢, yields the normal equations

n

> [Fx) - (cg+ -+ + ¢ P& Px) =0 v=0,-,m
i=1
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The normal matrix is:

(Py, Py) (PpP) -+ (PyP)

(P_.Py) (P.P) --- (P.P)

where (P#,Pv) is the inner product

Z Pp(xi) Pv(xi)
i=1

If a set of polynomials can be obtained with the property that (IL,PV) = 0if u # v, then only the

diagonal terms will remain in the normal matrix and the solution to the system will be:

(F,P,)

(P,P,))

Such a set of polynomials is called an orthogonal set with respect to the inner product

z Pﬂ(xi) Py(xi)
i=1
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and can be easily generated using the following recursion scheme:

PO.(x) =1

pi(n) = xpglx) ~ oy pelx)

polx) = xp(x) — a;pilx) - Bypylx)

Pn+1(x) = xPn(x) - anPn(x) - 'Bn'l Pn'l(x)

where

(xPn,Pn)
a4 = e
n
(PP)
(xPn+1,Pn)
B, - —
(P.P)

A proof that these polynomials have the property that (P#,Pv) = 0if 4 # v is contained.
in Appendix B.

The advantages of orthogonal polynomials are as follows:

1. There is no accuracy problem in obtaining either the orthogonal polynomials or the

coefficients of the orthogonal polynomials for a particular fit.

2. Once having obtained the polynomials, they may be used to fit many different functions

as long as the x; remain fixed.
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3. The F-test is a test for determining what order polynomial should be used to fit a

given set of data. The test consists of calculating

T ) - Px))
i=1

i

o
k n—k-1

for k =1, 2, --- and testing the null hypothesis that 0"21 and Un2+l are sample variances from
populations with the same variance (Ref. 4). When the null hypothesis is accepted, the smaller
order fit is accepted. Using orthogonal polynomials, the reduction in 02 can be calculated with-
out doing the fit all over again (Ref. 4). If the P, are orthogonal polynomials, the values of O'k2
for increasing k can be calculated using a recursion formula, while, if the Pk are powers of x, the

whole operation must be repeated, or a complicated computer program must be developed.

The disadvantages of orthogonal polynomials are as follows:

1. If an approximation algorithm is being sought, the needed quantities are the coef-
ficients of the powers of x, since the powers of x are much easier to compute than the values of
the orthogonal polynomials. But in trying to recover the coefficients of the powers of x, the same

accuracy problem is encountered which arises in trying to solve the normal equations.

2. In using orthogonal polynomials one is forced to use all powers of x less than or equal

to the degree of the fit. This may be undesireable, e.g., only the odd powers may be wanted.

3. There are statements in the literature that orthogonal polynomials can be extended to

more than one dimension, but little seems to have been done along these lines.

For further details on the use of orthogonal polynomials see Ref. 5.
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Il. A NEW TECHNIQUE FOR THE APPROXIMATE SEPARATION OF VARIABLES

The following analysis was done because of a suspicion that certain functions of two
variables which arise in the approximation of missile-guidance parameters were very nearly
separable. Separable is used here to mean that the function f(x,y) can be written as the product

of a function of x only by a function of y only.

It was felt that perhaps, for the cases in which a function was nearly separable, a much
better fit to the data might be obtained by fitting fl(x) and f, (x) separately than by fitting
flx,y) directly.

Given an empirically determined function f(x,y) which is suspected of being nearly
separable in the sense that f(x,y) = f, (x) fy (y) + E (x,y) where the E (x,y) are all very small
compared to the f{x,y). Suppose also that the function f is specified only on the space

(xi’yj)i =1, ,m j=1, - n, so that f(xl.,y]-) =a; Let A be the matrix of function values,
i.e.,
411 %2 T %m
A =
4m1 L) %nn

The problem of separating f(x,y) then reduces to the problem of finding two vectors
X = (xl, e, xm) and ¥ = (yl, e, yn) such that their outer product XTY is as close as possible
to the matrix 4 in the sense that it minimizes some norm H 4 -xTy ||. For the definition of an

abstract norm, see Ref. 6.

A. The Least-Squares or Euclidean Norm

A standard norm is the Euclidean Norm:

4 -xTy W= % (a; - x)% = E
ij

Page 14




Jet Propulsion Laboratory Memorandum No. 30-1

In order to make E| a minimum its partials with respect to the x; and y; must be set to

zero. Notice, however, that
(aXT> (l Y) - xTy
a

for all constants a. This means that one element of either X or Y can be fixed arbitrarily at any
non-zero value. Let us, for concreteness fix x =L Then the conditions to be met for minimum

E1 are

oK,
=0 i=2 - ,m
Jdx,
i
> (1
9F,
— -0 j= 1, n
Byl.
7
Equations (1) reduce immediately to
3 8 BRI T 1
x, = i=2 «,m
: 2
Yy tet ¥,
> (2)
@)%y Oy '
Y, = ] = 11 s, N
! %2 4 +x 2
1 m J

There does not appear to be any straightforward way to solve Equations (2), but it is possible to

use them as iteration equations to obtain convergence once a good guess at the solution is made.
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B. The Log-Square Norm

An alternative norm which leads to a simpler computational scheme is the nom E,.

14 - xTyll = 3 log? | —L)= E,
if %ij

The problem of minimizing E 4 can be greatly simplified by making the following substitutions:

u; = log x;
v, = log Y
bii = log a;i

With these substitutions we have:

E2 = z (ui + v —bl.].)2
i

Taking partial derivatives of £, with respect to u) and v, yields:

uy = Byg -V (3a)

v, = BO#—U (3b)

where

]
1
B)\() R Zb,\]
]
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But since w; = 1, uy = logw, =0, and by Eq. (3a) with A =1

V= BlO
Knowing ¥V, Eq. (3a) yields
uy = Byo - Bio (4a)
Averaging the uy gives
U=B-By
where
ij

Knowing U, Eq. (3b) yields

V, = By, - B+ By (4b)

To see that Egs. (4a) and (4b) actually represent a solution to the system 3a and 3b notice that
the average of the u) as calculated by Eq. (4a) is B ~ By and that the average of the v, as given
by Eq. (4b) is Bo- Substituting these values of U and V along with the values of uy and v, from
Egs. (4a) and (4b) into Eqgs. (3a) and (3b) gives

Bxo = Byo = Bao ~ Byo (5a)

BOp.'B+Bl()=BO - B+By, (5b)

In

which are identities.
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The algorithm for computing the x; and ¥ from the a;; is:
1. Take logarithms of the a;; to get the bij
2. Average the rows and columns of the bij matrix to get the B o and the B
3. Calculate the u; = B, = B
4. Calculate the average of the u; to get U
5. Calculate the v; = Boi -U

6. Take anti-logs of the u; and v; to get the x; and the Y

C. Comparison of Norms

It seems natural at this point to look for some relationship between the log-square and
least-square norms. Notice that if the product representation is fairly accurate, the products
;Y will be close to the matrix elements a;; so that the ratio %Y, /a;; will be close to one. But

]
this allows the writing of

x.y.

14
log2 —L = log2(1+p) 6)
a;
where
Xy
p = L
a;
and is less than 1 in absolute value.
Expanding the logarithm gives
10g2 /] =pz_p?,Jr_led,Jr_
a;. 12
]
or
, 2
o2 Xy (xiy]. - aij) a - QP)
og =
aij a2

)
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where 6 < 1 arises from truncating the power series for log2 (1 + p). Now let

8; =@ + Vij
and
B - a®
Eq. (6) can be written
XY .
2 Y1 _ 2 "
e” o T i) g

where
1-6p
=
] / Vij\ 2
2
a
and

9:1-1£p+5 2 _ 137 34
12 180

o|

Notice that if the approximation is good so that p is small and that if there is not much variation
in the a;; so that Vij is small compared to a, then Wij is close to 1. Since Wij is the weighting
factor which it would be necessary to include in the least-squares solution to get a result identical

with the log-square method, it is seen that the two methods will yield very similar results for small

p and Vije
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D. Extension to Three Dimensions

Both the least-square and the log-square norms generalize easily to n dimensions. In the

case of three dimensions, the norms generalize to:

2
E) = 3 (g - xiyjzk)
ijk
i =1,1
j=1m
k=1,n
x.y.zk
2 ¥
E2 = Z lOg a"k
ijk N

The iterative equations for the least-squares solution become:

].zk" CNjkY %k

e

)

a ik itk
2y, s =

2
252}

i Gijv*iY;

2,12y}
ij

with

53
i

log x;

<
il

j = g
w, = log z;,

bijp = logayy,
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and with

1
B = ,
ro0 = — > bak
ik
B 1
o0 = 7 bip.k
ik
1
Boor = —— 2. bijy
Im
i
1
B - Imn z bijk

The log-square solution becomes:

uy = Byoo — Byoo

v =B B

M 0.0 ~ Boro

w, = Bogy + Bygo + Boyo — 2B

E. Comparisons Between Separation and Two-Dimensional Curve Fitting

Table 1 exhibits the set of data which was used to generate the fits in Tables 2 through

5. The function values in the body of the table are the values at a point whose x-coordinate is

the number of x; at the left of the entry and whose y-coordinate is the number Y above the entry.

For example F(0.6,1.5) = 965.18.
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Table 2 shows the results of a log-square fit to the data of Table 1. The w; and z; are
the separating vectors, and the elements in the body of the table are the residuals

w;z; = F(xi,y].). The quantity E is the sum of the squares of the residuals.

Table 3 is identical in format to Table 2 and shows the results of a least-squares fit to
the data. Notice that there is very little difference between the log-square residuals and the
least-squares residuals. The least-squares solution must be better than the log-square solution in
the sense that E is smaller, since the least-squares solution minimizes E whereas the log-square
solution minimizes a different norm. But the log-square solution is actually better than the least-
squares solution for this set of data in the minimax sense since the greatest absolute residual in

the log-square case is 2.98 compared to 3.37 for the least-squares case.

Tables 4 and 5 compare the approximation algorithm obtained by fitting polynomials to
the separating vectors of the least-squares solution with the algorithm obtained by doing a
standard two-dimensional least-squares fit to the original data. In both cases the approximating
equations themselves are stated at the top of the table, the body of the table consists of the
residuals f(xiyj) - F(xi,y].), and F is the sum of the squares of the residuals. Note that for this
set of data the product separation has a much smaller E than the two-dimensional least-squares

fit even though it contains the same number (7) of parameters.
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IV.  THE ACCURACY PROBLEM

One of the first phenomena noticed when working with the standard least-squares process
and an 8-decimal digit computing machine is that it begins to give obviously erroneous answers as
the degree of the approximating polynomial approaches six. This is a discouraging phenomenon
because it seems at first glance that if the function values are known to, say, four figures the
coefficients determined from them should also be good to four figures. There are good reasons,

however, why this should not be true.

A. Comparison of the Normal and Hilbert Matrices

If all the powers up to m are included in a one-dimensional fit, and if the x; are fairly
evenly spaced and normalized to the unit interval, a revealing approximation can be made to the

resulting normal matrix. In this case

N 1
1
z xf ~ N xPdx = N
- p+l
i=1 0
and the normal matrix then looks like
N N N N
2 3 m+1
N N N N
2 3 4 m+2
N N N N
m m+] m+2 2m +1

But this matrix, with the N removed, is just a finite segment of the well-known Hilbert

matrix which is notoriously ill conditioned (see Ref. 7).
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With single precision arithmetic (8-decimal digits), matrices of this type of order greater
than five cannot in general be inverted with accuracies of more than two or three digits. With
double precision (17 or 18 significant digits) inverses accurate to 2 or 3 digits can be obtained
for orders up to about 11. This means that, using single-precision arithmetic, curve fits of order
6 cannot be expected to improve on fits of order 5. Using double precision, fits of order 12 cannot
be expected to improve on fits of order 11. This breakdown of the curve fitting process is illus-
trated by Figs. 1 through 4. These Figures give the error curves for various polynomial fits to the
set of data of Table 6. Notice that the sum of the squares of the errors (E) is larger for the 6th-
order single-precision fit than it is for the 5Sth-order single-precision fit, and that the same thing
happens in going from order 10 to order 11 in the double precision case. It can be concluded that
fits of order 6 or greater should always use double-precision arithmetic and fits of order 11 or

greater cannot be done even with double-precision methods.

B. Empirically Determined Guides for Estimating the Number of Expected Coefficients

If the exponents 1 through m are not all present in the approximating polynomial or if
the polynomial is in several variables, then no simple model with known inverses is available,
and it is necessary to rely on experience to determine how many accurate coefficients may be
obtained. Fortunately, experience is quite consistent, and fairly reliable rules can be formulated.

These rules can be summarized as follows:

1. It is the order of the normal matrix that matters, not the order of the approxi-
mating polynomial. Therefore, it is necessary to think of the number of coefficients which can

be obtained rather than the order of the polynomial.

2. With single precision (8-decimal digits) in one-dimension, approximately 6
““good’’ coefficients can be expected. (By good is meant that E for the fit will be smaller than

E for the fit with one less coefficient).

3. The ratio of precisions in the arithmetic multiplies the number of expected
good coefficients (i.e., double precision can be expected to give twice as many good coefficients

as single precision).

4. The number of dimensions is a power on the number of expected good
coefficients (e.g., the number of expected good coefficients in a single precision three-

dimensional fit is 6 and the number of expected good coefficients in a double precision two-

dimensional fit is (2 x 6)2.

Normalization of all the variables either to the interval (0,1) or to the interval (-1,1)
should always be done before curve fitting. This normalization causes the normal matrix to be a

little further from singular and the resulting coefficients to be near 1.

Page 24




Jet Propulsion Laboratory Memorandum No. 30-1

V. CURVE FITTING ROUTINES AVAILABLE AT THE
JET PROPULSION LABORATORY

The Datatron least-squares program accepts up to 200 fixed decimal values for the
dependent and independent variables. These numbers are not destroyed by the operation of the
program, so they may be re-used without being re-entered. The user specifies the order fit
desired by entering the order in a fixed memory location and chooses single- or double-precision
arithmetic by the setting of a switch on the computer console. The program will not fit poly-
nomials of order greater than 6 when operating in the single-precision mode and will not fit poly-
nomials of order greater than 12 under any conditions. One of the advantages of this routine is
that if a single-precision fit is done and turns out not to be sufficiently accurate, the switch on
the console can be flipped down, putting the computer in double-precision mode, and the problem
can be immediately re-run to obtain the double precision fit using 24 x,y pairs. This routine takes
3.5 min for a fourth order single-precision fit and 10.5 min for a double-precision fourth order fit.
Sixth order fits take 6.5 min and 16 min for single- and double-precision, respectively. A twelfth

order fit which must be done double-precision takes 45 min.

Also available is a separation program for the 704. This program accepts as input a
matrix ajj i=1m, j=1,n. The a;; must all be positive. The user has the option of obtaining
either a log-square separation or both the log-square and least-squares solutions. His choice is
indicated by a control card which is read in with the data cards containing the a;;- In either case

the output consists of the separating vectors u; and vp the error matrix (ai]. - uivj), and the error

In the event that both log-square and least-squares solutions are taken, it will be noticed that

E is larger for the log-square solution than for the least-squares solution. The reason is that the

9 ul.v].
Ep= 2 loer|
Yy

i

log-square code minimizes

not
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but it is E| which is listed for both solutions. This code will fit any matrix of dimensions less
than or equal to 20 x 20. It requires approximately 15 sec to fit a 7 x 13 matrix using the log-

square norm and another 30 sec to calculate a least-squares solution.

The two-dimensional least-squares program written at JPL for the 704 fits a polynomial
of the form P(x,y) = aox)\Oy;xO +oee o oa x)\my‘“" to a set of data Xp Yo Fij i=lL,mj=1n
where Fij = F(xi,y].). This is a single-precision program, so at most 36 coefficients can be
expected from a fit using this program. There are no restrictions on the choice of the A, u;
pairs. The output from this program consists of a listing of the A, 4 pairs with the associated
coefficients beside them, a listing of the matrix of the values of P(x,y) and F(x,y) - P(x,y), and
the sum of the squares of the errors E. The function values of the data for this program are
restricted to lie on a lattice of dimensions less than or equal to 20 x 20 and to determine the

coefficients of a polynomial with 10 coefficients over this full space would require approximately

40 sec.

The three-dimensional least-squares program written at JPL for the 704 fits a polynomial
of the form P(x,y,2) = aox)\OyyOzvo b o 4 amx'\"'y“'mzvm to a set of data x, Yp Zp Fijk’
i=1,1,j=1,m, k=1, n where Fijk‘: F(xi,y].,zk). Space and time limitations impose a
restriction to 60 coefficients when using this program. There are no restrictions on the choice of
the (A, i, v) triplets. The output of this routine consists of a listing of the (A, u, v) triplets
with the associated coefficients beside them, a listing of the matrix of the errors, and the sum of

the squares of the errors £. The data peints for this program are required to lie on a lattice

5 x 5 x 13. To determine 20 coefficients over such a lattice takes approximately 3 min.

A general least-squares curve fit routine for multidimensional work is now being written.
This routine will fit polynomials in either two or three dimensions with either single or double
precision and will carry along a weighting factor W so as to minimize 2 W (P — F)2 where F > 0.
The points used do not have to be equally spaced or to lie on a lattice, and any combination of

exponents may be used.
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VI.  CONCLUSIONS

The techniques discussed have been useful in curve-fitting analysis using a general
purpose digital computer. The exponent-addition-table way of looking at the structure of the
normal matrix greatly simplified the coding of two- and three-dimensional curve-fitting programs
and caused the resulting programs to be much more flexible than they would otherwise have been.
The separation theory has supplied a rather simple algorithm for performing a calculation which
had been in the past rather cumbersome. All of the routines written as a result of these investi-
gations have been extensively used already and will probably continue to be heavily used in the

future.
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Table 1. Original Data for Separation Comparisons

Y
0.0 0.5 1.0 1.5 2.0 25 3.0

0.0 398.11 876.42 1198.61 1376.01 1400.18 1275.19 1000.71
0.1 285.46 623.69 857.23 979.39 998.07 908.13 712.92
0.2 218.72 478.46 655.46 752.87 766.19 697.63 546.11
0.3 193.93 423.03 579.42 661.64 673.95 614.82 483.82
0.4 198.65 439.45 598.22 687.30 701.42 636.09 502.22
0.5 230.37 505.81 697.89 797.31 812.02 738.42 580.01
0.6 282.42 617.43 843.29 965.18 982.91 895.45 702.19
0.7 337.32 741.93 1018.05 1168.64 1189.53 1082.11 848.04
0.8 399.17 873.57 1199.85 1374.65 1398.63 1275.54 999.24
0.9 456.68 992.52 1360.33 1558.82 1588.73 1447.85 1135.03
1.0 49298 1078.86 1480.71 1697.87 1728.12 1573.83 1235.16
1.1 510.40 1121.69 1536.08 1758.27 1790.82 1631.86 1279.01

1.2 499.03 1093.78 1497.91 1719.26 1751.23 1594.80 1249.31
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Table 2. Log-Square Separation for Data of Table 1

(E = 139.08)

4
¥ 399.40 875.25 1199.51 1374.40 1399.75 1274.44 1000.11
1.00000 1.29 -1.17 0.90 -1.61 -0.43 ~0.75 -0.60
0.71328 -0.57 0.61 -1.64 0.95 0.34 0.91 0.44
0.54705 -0.23 0.34 0.72 -1.01 -0.47 -0.45 1.00
0.48300 -1.02 ~-0.29 -0.06 2.19 212 0.73 -0.77
0.50009 1.08 ~1.74 1.63 0.02 -1.42 1.25 -2.08
0.57944 1.06 1.34 -2.85 -0.93 -0.95 0.04 -0.50
0.70353 -1.43 -1.66 0.60 1.76 1.86 1.16 1.43
0.84830 1.50 0.54 -0.51 -2.74 -2.13 -1.00 0.35
0.99959 0.07 1.32 -0.84 -0.81 0.54 -1.62 0.47
1.13594 -2.98 1.71 2.24 2.42 1.30 -0.16 1.04
1.23446 0.06 1.61 0.03 -1.22 -0.19 -0.58 -0.56
1.27972 0.72 -1.61 -1.04 0.59 0.47 -0.92 0.86
1.25006 0.25 0.34 1.55 -1.17 -1.46 -1.67 0.89
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Table 3.  Least-Squares Separation for Data of Table 1

(E = 104.80)

Y 4
¥ 399.58 875.40 1199.82 1375.15 1400.35 1275.41 1000.22
1.00000 1.48 -1.02 1.21 -0.86 0.17 0.22 -0.49
0.71278 -0.64 0.28 -2.01 0.79 0.07 0.96 0.02
0.54687 -0.20 0.27 0.69 -0.84 -0.38 ~0.14 0.88
0.48218 -1.26 -0.94 -0.89 1.43 1.26 0.15 -1.54
0.50005 1.16 -1.79 1.75 0.34 ~-1.17 1.69 -2.06
0.57974 1.28 1.69 -2.30 -0.08 -0.18 0.99 -0.14
0.79248 ~-1.72 ~2.48 -0.43 0.84 0.81 0.50 0.45
0.84875 1.83 1.06 0.30 -1.48 -0.99 0.40 0.90
0.99936 0.16 1.27 -0.79 -0.38 0.82 -0.94 0.34
1.13444 -3.37 0.56 0.80 1.20 ~0.12 ~-0.97 -0.34
1.23413 0.16 1.49 0.03 -0.75 0.09 0.20 -0.75
1.27931 0.79 -1.78 -1.13 0.98 0.66 -0.21 0.59
1.24982 0.38 0.31 1.66 -0.56 -1.04 -0.76 0.79
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Table 5. Two-Dimensional Curve Fit for Data of Table 1
(E = 2.334.10%)

F(x,y) = 283.26 + 937.66y ~ 651.36x — 168.92xy + 908.31x2 — 260.14y2 + 235.27x%y

Yi
X;
0.0 0.5 1.0 1.5 2.0 25 3.0

0.0 -11484 | -189.36 | -237.83 | -271.58 | -282.17 | -273.66 —-245.74
0.1 -58.24 0.04 32.96 47.18 34.82 1.00 -57.62
0.2 -29.39 102.47 187.00 221.06 209.14 149.02 41.80
0.3 -24.32 135.62 238.20 284.88 271.40 199.29 68.98
0.4 -30.60 117.44 217.42 257.03 241.53 175.42 47.76
0.5 -45.71 69.82 138.64 170.06 156.11 100.40 -0.57
0.6 -62.98 -2.52 37.01 50.45 37.98 0.62 -61.00
0.7 -64.93 ~-67.23 -71.1 -79.53 -88.31 -98.86 -112.83
0.8 ~-55.67 | -118.56 | -163.40 | -186.83 | -189.50 | -175.18 -137.72
0.9 -2390 | -136.68 | -211.50 | -247.06 | -244.12 | -200.46 -114.92
1.0 47.23 | -101.67 | -196.62 | -236.96 | -220.45 | -149.47 -24.18
1.1 155.42 -2.64 -93.87 | -122.97 -92.51 -0.60 155.13
1.2 310.57 187.66 125.30 115.64 165.30 273.29 440.26
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Table 6.  Original Data for Figs. 1 through 4
X Y
0.0300 52.110
0.0500 56.206
0.0700 59.209
0.1000 62.189
0.1200 63.617
0.1500 65.808
0.1700 66.973
0.2000 68.439
0.2200 69.267
0.2500 70.449
0.2700 71.192
0.3000 72.130
0.3200 72.685
$.3500 73.558
0.3700 74.138
0.4000 74.940
0.4200 75.443
0.4500 76.181
0.4700 76.661
0.5000 77.370
0.5200 77.835
0.5500 78.526
0.5700 78.980
0.6000 79.640
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08 SINGLE PRECISION
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Fig. 1. Comparison of Single and Double Precision
Curve Fits of Fourth Order for Data of Table 6
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Fig. 2. Comparison of Single and Double Precision
Curve Fits of Fifth Order for Data of Table 6
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Fig. 3. Comparison of Single and Double Precision
Curve Fits of Sixth Order for Data of Table 6
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Fig. 4. Comparison of Tenth, Eleventh, and Twelvth
Order Double Precision Curve Fits for Data of Table 6
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APPENDIX A
Least Squares and Maximum Likelihood

Given
1. Asetofxi,i=l,n
2. An mth-order polynomial P, (X)

3. The value of o

A set of y; has been generated as follows:

y; = Po,(x) + N;(0,0)

where the N, are independent samples of a nomally distributed variable with mean zero and

variance 0'2.

This data set is now a model for an empirically determined set of noisy data in which

the assumption is made that:
1. The underlying function is an mth-degree polynomial.

2. The noise is uncorrelated random noise, normally distributed with mean

zero and variance o2

Now suppose that we have been given m, and the exact values of the x; and y; and are required
to find the a;,i=0,-, m which maximize the likelihood of our sample. The likelihood of a

sample y;, i = 1, --- , n where y has the distribution function f is defined to be

iglf(yi)

In our case the variable which is normally distributed is y; — P (x;) and f is

i » 1 (x—m)
exp 5 -

oN/2m
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The likelihood of our sample is

n 1 (7~ B xy)
L = 1 ———exp—?

=1 oV2m v

or

(VI "expl- 1 %

h
1

Instead of maximizing L

n
2
Log L ——nlogd~%log2ﬂ—% Z [y, - P, (x;)]

Partialling on o yields

Setting this partial equal to zero yields

[y, - B, )" =0

1 n
4+ —
RN

q | =
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or

u'[\/] M

[y, - P_(x)]"

1
o = —
Ly |

]

which is the standard minimum variance estimator. Partialling on the a; yields

oL 1 &
— = — Z _Pm("i)] x:.' v=0,+-,m
da o2 i

v

Setting these partials equal to zero yields the standard normal equations of least squares. Thus
it can be seen that under the assumptions of (1) underlying mth order polynomial and (2) uncorre-
lated normally distributed noise with zero mean, the least-squares procedure is a maximum

likelihood procedure.
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APPENDIX B

Generation of Orthogonal Polynomials

Write the recursive equations as follows:

1. P_l(x) =0
2. PO (x) =1
3. Pnﬂ(x) = xPn (x) - anPn(x) - ,Bn_an_l(x)

The proof that it is possible to choose o and B, _, to obtain a set of orthogonal poly-
nomials proceeds by induction. Assume that there already is a set Fy, Py, :-+, P, of polynomials

such that (P#, P,) =0if u # v and look at

Pk+l = ka "aPk —ﬂpk_l

Notice that P, ., is already orthogonal to P, a < k -1 since

(P, P)

a

I

(ka —aPk _,BPI‘_I, P)

a

)

1

(Pk7 xPa) -(Pka Pa) "(Pk_ly P

a

but xP, is a polynomial of degree less than k, so that (P, xP)) = 0, and P_is of degree less
than & — 1, so that (Pk’ Pa) = (Pk - Pa_) = 0.

Therefore, all that is needed is to make Py orthogonal to P, and P, -1 by proper
choice of a and 8. But

(Pk"’l’ Pk) = (ka "'aPk —ﬁPk'—l’ Pk)

(xP,, P) - a(P,, P) - B(P,, P, _)
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and

(Pk*‘l’ Pk_l) = (ka - G.Pk ~ﬁPk_l, Pk‘l)

(ka,Pk_l)_a(Pk,Pk_l)",B(Pk_lqpk_l)
If these two inner products are set to zero there results:
(ka’Pk)-a(Pk’ Pk) =0

&P P _y) = BE 1 B = 0

These equations have the following solutions

(ka, Pk)
(P, Pp)

(ka, Pk'l)

By —y Py

Thus the induction is complete and can be carried to the point where

(Pk’ Pk) = 0

But (Pk’ Pk) = 0 implies Pk (xi) =0,i=1, -, n, and this cannot occur until k¥ = n

since it takes an nth degree polynomial to have n roots, and since the orthogonal polynomials

are guaranteed to be nontrivial by the fact that their leading coefficient is always unity.

This analysis assumes no special properties of the inner product used here and can be

carried through in an entirely analogous manner with a general inner product.
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